Martí i Franquès MSCA-COFUND DP. Call for 1 PhD candidate within the project "Advanced...
Universitat Rovira i Virgili
Tarragona, Spain
hace 2 días
source : Euraxess


The Martí i Franquès COFUND Doctoral Fellowships Programme (MFP) is a redesign of the existing MF programme, offering 100 doctoral contracts (in four editions : 2017, 2018 and 2020, 2021) at the Universitat Rovira i Virgili (URV).

The programme is uniquely shaped to offer the best training stemming from the "triple i" principles of the Marie Sklodowska-Curie Actions : international, interdisciplinary and intersectoral.

In order to achieve these goals, we combine leading research groups at URV with scientific partners from world-class institutions, such that the candidates are be exposed to interdisciplinary training as well as mentoring from the industrial sector.

Through MFP, URV is in a unique position to offer the best conditions for doctoral training, based on the principles of the and the Code of Conduct for the Recruitment of Researchers (guaranteed by the HR award that URV has received in 2014), as well as the .

Description of the research project (reference : 2020MFP-COFUND-27)

The performance of a photonic biosensor depends on the photonic structure used. For this reason, we will study several photonic nanostructures and the way to improve their light-matter interaction to enhance the sensitivity and limit of detection. Further improvement

of the biosensors is expected by combining metals - nanostructure and plasmonic effects. From the relationships between geometrical parameters and photonic properties, structures that maximize sensitivity for each type of analyte (proteins, enzimes, bacteria, metal ions, or

drugs) will be obtained, paying special attention to the process of transduction between the

recognition event and the measured optical property (resonance or shift wavelength, interfectometric spectroscopy, surface plasmon renosonace, etc).

A fundamental process in a biosensor is the entrapment and selective detection of the analytes. For this reason, is necessary to determine the chemical properties of the surface providing the highest affinity and selectivity for the target analytes with no interference from the rest of components present in a sample.

The objective is to find and formulate the most appropriate functionalization pathways for each type of analyte. The sensitivity and selectivity should be evaluated for the fabricated nanostructures hybrid nanoporous and photonic structures.

The stability of the devices against different samples and under different experimental conditions should be also investigated.

One of the most important points planned to be studied is the dynamics of the change of optical properties as a function of time.

Finally, methods for manufacturing several structures in the same substrate have to be developed to produce a polyvalent multisensor platform.

Required Research Experiences

  • RESEARCH FIELD Engineering
  • Offer Requirements

  • REQUIRED EDUCATION LEVEL Engineering : Master Degree or equivalent
  • Reportar esta oferta

    Thank you for reporting this job!

    Your feedback will help us improve the quality of our services.

    Mi Correo Electrónico
    Al hacer clic en la opción "Continuar", doy mi consentimiento para que neuvoo procese mis datos de conformidad con lo establecido en su Política de privacidad . Puedo darme de baja o retirar mi autorización en cualquier momento.
    Formulario de postulación